Chemical characterization and the stress induced changes of the extracellular polysaccharide of the marine cyanobacterium, *Phormidium tenue*

Tania Chakraborty1*, A.K Sen2 and R. Pal1,

1Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata – 700019, West Bengal, India, 2Department of Chemistry, Indian Institute of Chemical Biology, 4 Raja S.C Mallik Road, Kolkata -700032, West Bengal, India; *Corresponding author- author-press79@gmail.com

Abstract

The cyanobacterial strain *Phormidium tenue* was subjected to different stress conditions like culture aging, phosphate and nitrate depleted condition, excess nitrate (10mM) and salinity (0.9M NaCl). Excess nitrate and salinity used were just the double amount, required for normal concentration. Growth was monitored by Chlorophyll content and total protein level in relation to polysaccharide production. Remarkable increase in EPS contents were noted in all stresses given, which were almost 1.7, 2, 3 and 4 times more in excess nitrate condition, phosphate depleted, nitrate depleted and high salinity respectively. It was also observed that aging is an important factor for increasing EPS production. Exocellular polysaccharide (EPS) from this marine cyanobacterium was characterized using GLCMS and stress induced variation in total production was studied in batch culture mode. The neutral sugar composition of *Phormidium* biomass was identified by gas liquid chromatography showing monosaccharide composition as Rhamnose, Fucose, Xylose, Mannose, Glucose and Galactose. It was evident from the study that the structural architecture of the extra cellular polysaccharide of *Phormidium* is highly complex in nature as common in algal system.

Key words:- Culture aging, Extra cellular polysaccharide, Filamentous cyanobacteria, Gas chromatography, Nutritional stress, *Phormidium tenue*.

Introduction

Cyanobacteria are photoautotrophic organisms having prokaryotic cell structure share many characters with bacteria in spite of the fact that their photosynthetic metabolism resembles that of aerobic photosynthetic eukaryotic algae. Many cyanobacteria are able to synthesize outermost slimy investments and to release polysaccharidic material into the culture medium during cell growth. These polysaccharides, are of enormous interest in view of their possible uses in several industrial applications. This EPS with high biotechnological potential is much easier to exploit further, unlike the plant system.

Cell wall polysaccharides have been proved to be helpful in energy storage, in maintaining the structural integrity and mechanical strength, controlling of osmotic pressure, buffer layer that protects against drought and infective organisms such as viruses, bacteria, fungi (Arad 1988, 1999; Kioareg and Quatrano 1988; Lapsin and Prici 1995; Arad and Richmond, 2004). Among the algal (including cyanobacteria) bio-chemicals of commercial importance, algal polysaccharides vary in structural and functional properties based on the type of organism and the growth conditions. Polysaccharides from algal sources have been found to possess a variety of biological activities which may find application in cosmetic, food and pharmaceutical industries (Morris et al 2001; Chen et al 1994; Tache et al 2000; Berteau and Mulloy 2003).

In the present study, variation in total EPS production, related to other growth parameters of *Phormidium tenue* in long term controlled batch culture mode was studied in different nutritional condition. Chemical characterization of the neutral sugars present in the EPS was performed by Gas Liquid Chromatographic study.

Materials and Methods

Organism and Culture Conditions:

The cyanobacterial strain *Phormidium tenue* was procured from National Facility for Marine Cyanobacteria (NFMC), Tiruchirapalli, Tamilnadu, India. The cyanobacterial strain is filamentous, multicellular organisms, having breadth 1–1.5 μm. The strain is maintained in batch culture mode under sterile conditions in Artificial Sea Nutrient III liquid medium, containing the salts (g mL\(^{-1}\)): NaCl 25 gm; MgCl\(_2\) \(6\)H\(_2\)O 2 gm; KCl 0.5 gm; NaNO\(_3\) 0.75 gm; K\(_2\)HPO\(_4\) \(3\)H\(_2\)O 0.02 gm; MgSO\(_4\) \(7\)H\(_2\)O 3.5 gm; CaCl\(_2\) 0.5 gm; Citric Acid 0.003 gm; Ferric Ammonium Citrate 0.003 gm; EDTA 0.0005 gm; Na\(_2\)CO\(_3\) 0.02 gm; Trace Metal Mix A5 1 ml containing (mg mL\(^{-1}\)) H\(_2\)BO\(_3\) 2.86 mg; MnCl\(_2\) \(4\)H\(_2\)O 1.81 mg; Na\(_2\)MoO\(_4\) \(2\)H\(_2\)O 0.390 mg; ZnSO\(_4\) \(7\)H\(_2\)O 0.222 mg; CuSO\(_4\) \(5\)H\(_2\)O 0.079 mg and Co(NO\(_3\))\(_2\) \(6\)H\(_2\)O 0.0494 mg. The pH was maintained at 7.5 after sterilization. The culture sets are maintained by regular transfers into fresh liquid medium at 20°C in 16/8 hour light/dark cycle under cool fluorescent light having light intensity 20-30 μmol photons m\(^{-2}\) s\(^{-1}\).

Experimental design:

Each experimental set is inoculated with known amount of live bio-mass of exponential growth phase. One set was maintained as control. The sets are subjected to different stresses like a) culture aging b) PO\(_4\) deficiency c) NO\(_3\) deficiency d) 10mM NO\(_2\); conc. e) 0.9M NaCl. Bio-mass were harvested at regular intervals of 7 days from 14 days after inoculation (acclimatization period). Samples were taken in triplicate from one culture for extracellular polysaccharide, protein and chlorophyll estimation. Axenity of the cultures was checked by plating on agar medium and by microscopic observation.

Extraction of EPS:

Most of the extraction procedure so far reported, dealt with EPS which were released in the culture medium. The main obstacle faced here is that the filamentous algal strain, do not release EPS in this way. The extraction procedure was modified from the standard protocols (Li et al 2001, Helm et al, 2000) for better extraction. For chemical characterization and biochemical assay, biomass of known weight were taken and EPS were extracted first with dH\(_2\)O followed by 4M NaOH solution. Different procedures such as 1M NaCl, EDTA salt, 0.1-0.2 H\(_2\)SO\(_4\) were also tested. However, best result was obtained when extracted with dH\(_2\)O followed by 4M NaOH solution. Bio-mass was washed with ethanol and loosely bound polysaccharide fraction was extracted by dH\(_2\)O. The cell-free supernatant was separated by centrifugation and 90% ethanol (3 times) was added and kept overnight in 4°C. The precipitated polysaccharide was collected by centrifugation. The residual biomass was treated with 4M NaOH at 90°C for 1 hour. The cell-free supernatant was collected by centrifugation and to it, 90% ethanol (3 times) was added and kept overnight in 4°C. The precipitated polysaccharide was collected by centrifugation and washed with alcohol till it was free from residual alkali. The residue after 4M NaOH extraction which contained the intact cells was again washed with dH\(_2\)O to remove alkali, grinded in presence of 10% TCA and kept overnight in 4°C. The amount of extracellular polysaccharide present in the precipitate from dH\(_2\)O and 4M NaOH fractions were quantified by the Standard phenol-sulfuric acid method (Dubois et al, 1956).

The polysaccharides were further purified by repeated precipitation with ethyl alcohol. The sugars present in the purified polysaccharides were analyzed by GLC-MS, Chlorophyll (Arnon, 1949) and protein (Lowry et al, 1951) were estimated following standard protocols.

Fourier transform infrared spectroscopy:

Fourier transform infrared spectroscopy (FT-IR) were performed on KBr plate. FT-IR spectra were recorded on a Jasco 410 instrument, with a resolution of 4 cm\(^{-1}\). Spectra were obtained in the 4000-400 cm region.

Monosaccharide analysis: Purified samples (1-2 mg) were hydrolyzed with 2N TFA at 120°C for 2 h in sealed glass tube to produce monosaccharides. For the detection and estimation of sugar by GLC as their alditol acetates, the liberated monosaccharides were reduced with sodium borohydride followed by neutralization with aqueous acetic acid to adjust its pH to 4. The resulting alditol was acetylated and traces of the reagents were removed by repeated co-evaporation with dry toluene. The neutral sugars were analyzed as alditol acetates by GLC-MS analysis. A Hewlett Packard 5890 plus GC tandemly linked to a
JEOL mass spectrophotometer (JEOLAX-500) with electron impact ionisation (EI) at 70 eV and ion source temperature at 200°C was used. For resolution, DB-5MS capillary column (0.25mm, 0.25μ, 30m) was used using temperature programming (150°C-2min-5°C/min-200°C-10min). Analysis were carried by using a HP-5 column equipped with Agilent Chemstation software.

Uronic acid estimation: Galacturonic acid was detected by paper chromatography and GLC. The sample (5 mg) was hydrolyzed by 2N trifluoroacetic acid (2 ml) in a sealed tube at 120°C. The acid was removed under reduced pressure in a rotavapour and traces of acid was removed by co-distillation with water. The sample was then analyzed by paper chromatography using solvent [acetic acid-water-pyridine-ethyl acetate, 1:3:5:5 (v/v)]. The spots were visualized by using alkaline-silver nitrate reagent. In a separate experiment, the hydrolyzed sample was heated with anhydrous methanolic HCl in a sealed tube at 100°C for 12 hours. The HCl was removed in a rotavapour and traces of acid was removed by repeated co-distillation with anhydrous methanol. The resulting methy glycoside methyester of uronic acid was acetylated as describe above. The resulting compund was analyzed as mentioned earlier. In both cases, standard samples of glucuronic acid and glacturonic acid was used for comparision. The galacuronic acid was estimated by using colourimetic method (REF) using m-hydroxy diphenyl (Blumenkratz et al, 1973).

Results

The results clearly showed that extracellular polysaccharide production changed in both control and different stress conditions given. In control condition, EPS content gradually increased upto 56 days of culture. In phosphate depleted condition, the EPS production also increased but with a greater rate and was maximum in after 28th days which was almost double compared to the control. Growth was measured by estimating chlorophyll content, increased upto 28 days of culture in control set, whereas the experimental biomass growth rate decreased after 14 days and remained almost stationary upto 56 th day (Fig.1a). Protein content increased a bit throughout the experimental tenure in control, and a gradual increase was observed in total protein content upto 28th day under phosphate depleted condition (Fig.1b).

Fig 1a: Variation in EPS and chlorophyll content in control and phosphate depleted condition with function of time.
Stress induced changes of the extracellular polysaccharide of *Phormidium tenue*

The results from nitrate depleted condition depicted that EPS content increased thrice the amount upto 28th days of exposure, whereas chlorophyll content followed the similar trend as in phosphate depleted condition (Fig.2a). Protein content soared high by 3 times after 21st days in nitrate depleted condition (Fig.2b).

Under excess nitrate (10 mM) condition, the EPS production was greatly enhanced by three times upto 56th day. Chlorophyll content went up upto 14 days and then remain almost static (Fig.3a) whereas protein content showed a similar trend but a higher rate than control. (Fig.3b). The EPS production greatly elevated under salt stress condition. It reached almost 4 times after 28th days of exposure (Fig.4a). The chlorophyll content gradually decreased after 21st day, showing the ultimate death of biomass though protein content followed almost similar trend as in control. (Fig.4b).

![Graph showing protein content variation](image1)

Fig 1b: Variation in protein content in control and phosphate depleted condition with function of time.

![Graph showing EPS and chlorophyll content variation](image2)

Fig 2a: Variation in EPS and chlorophyll content in control and nitrate depleted condition with function of time.
Fig 2b:- Variation in protein content in control and nitrate depleted condition with function of time.

Fig 3a:- Variation in EPS and chlorophyll content in control and excess nitrate (10 mM) condition with function of time
Stress induced changes of the extracellular polysaccharide of *Phormidium tenue*

Fig 3b: Variation in protein content in control and excess nitrate (10 mM) condition with function of time.

Fig 4a: Variation in EPS and chlorophyll content in control and salinity stress (0.9M NaCl) with function of time.
Fig 4b: Variation in protein content in control and salinity stress (0.9M NaCl) with function of time.

A broad peak in FT-IR spectra (Fig.5) appeared in 3426 cm\(^{-1}\) region corresponds to hydroxyl groups present in the polysaccharide. Peaks appeared in 1135-1542 cm\(^{-1}\) was due to C-H bending vibration. The C=O absorption of uronic acids occurred at 1651 cm\(^{-1}\). A sharp peak at 618 cm\(^{-1}\) may be due to the presence of unsaturation within the polysaccharide. The GLC-Mass spectrum of all the monosaccharides are shown in Fig 6. Analysis of the neutral sugars were carried by by GLC-MS analysis using a HP-5 column equipped with Agilent Chemstation software. The constituent sugars were found to be Rhamnose, Fucose, Xylose, Mannose, Glucose and Galactose in 2:3:2:3:8:2 ratio in the exopolysaccharides of Phormidium. The glucuronic acid (60%) was estimated by colourimetric assay.

Fig 5: FT-IR spectrum (400-4000 cm\(^{-1}\)) of pure exopolysaccharide of P. tenue.
Fig 6: Total ion chromatogram of the alditol acetates showing the neutral sugar composition.

Discussion

The present knowledge of cyanobacterial polysaccharides indicates that there lies a great opportunity, if the different parameters influencing the productivity of the exopolymer is better understood for biotechnological exploitation. A very important feature for cyanobacterial polysaccharides is that in some cases, the production changes during cell growth due to the presence or absence of certain factors. Several conditions like, energy availability and the C:N ratio, controlling the production of the cyanobacterial EPS have been identified (De Philippis & Vincenzini, 1998; Li et al., 2002) The role of nutritional factors influencing the production of cyanobacterial EPS is also an interesting field to study further.

In the present study, age of culture play an important role in increasing EPS content of *Phormidium* biomass. Probably nutritional stress condition is the main controlling factor of producing EPS in batch culture condition of cyanobacteria. Jones and Yopp (1979) also found that the extracellular carbohydrates increased with the age of cultures of *A. halophytica*. It was also corroborated from the previous study that many algae produce polysaccharides, mainly when they enter stationary growth phase (Hellebust, 1974).

Phosphate limitation almost doubled the EPS production. Similar results were also obtained in *Synechococcus* (Roux, 1996) and in *Cyanothecae* (De Philippis 1993). Growth decreased after 14 days of exposure in phosphate deficiency. As previously reported (Healey, 1982) no certain relationship has been found between growth rates and phosphate concentrations in the present study. The relationship between the available amounts of phosphate and the production of EPS is also not clearly understood, as the overall effect might be dependent on a set of interlinked variables such as the amount of phosphate, nitrate and sulphate (Grillo & Gibson, 1979, Sara Pereira et al. 2009).

In *P. tenue*, nitrogen deficiency also resulted in 3 fold increase of EPS production. Nitrogen starvation has well been described as a condition that enhances EPS synthesis in *Cyanothecae* (De Philippis et al.,1993), *Nostoc* (Otero & Vincenzini,2003), probably because this contributes to the increase in the C: N ratio, which plays a critical role in the production of exopolysaccharide (Cho et al. 2001).Elevated C:N ratio results in ample availability of carbon for the incorporation into the
exopolymers, thus producing more EPS (Otero & Vincenzini, 2003; Kumar et al., 2007, Sara Pereira et al. 2009). Growth was elevated at initial stage but afterwards it deceased as a result of nutrient limitation. Excess nitrogen affects the EPS production possibly in the opposite way. The result obtained in this study, also supports the same depicting that the EPS production did not amplify much as compared to the other stresses given. Excess nitrate do not affect EPS significantly probably because it is more metabolisable source of nitrogen compared to ammonium or urea which significantly induces EPS production (Roux et al., 1996). Interestingly, growth was almost linear up to 21st day and started to decline while EPS production began to enhance. Therefore, from the observed data and earlier reports (Roux et al., 1996), it can be stated that an increase in nutrient availability would not affect the EPS production; however, an increase in biomass would be expected.

The data obtained from the salinity (0.9M) stress in P. tenue showed great increase in EPS production which is almost 4 fold. It is well-known that extra cellular polysaccharide functions as an osmotic solute protecting membranes from desiccation (Chen et al., 2006). Under salt stress, cyanobacteria exports large amounts of EPS which improves salt tolerance and carbohydrate metabolism (Chen et al., 2003). During the experimental tenure, salinity stress became lethal in long term exposure resulting in the death of bio-mass.

In the present experiment, protein content also got enhanced or remained unchanged in all stress conditions, compared to that of control, indicating that the carbohydrate synthesis and protein formation, both were not hindered but stimulated due to stress exposure.

From the composition of the neutral sugars, it was evident that the structural architecture of the extra cellular polysaccharide is highly complex in nature similar to algal systems (Sara Pereira et al. 2009). It contained 6 different sugars as Rhamnose, Fucose, Xylose, Mannose, Glucose and Galactose in the ratio of 2:3:2:3:8:2.

In conclusion, different responses in polysaccharide production were observed under different stress conditions in Phormidium tenue. These results indicate that polysaccharide production, triggered by diverse conditions may be due to different mechanisms of polysaccharide synthesis. Thus, the strain can be well utilized as a source of EPS for biotechnological purposes.

References

